By Topic

Noise-Assisted Correlation Algorithm for Suppressing Noise-Induced Artifacts in Ultrasonic Nakagami Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Po-Hsiang Tsui ; Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan ; Chih-Kuang Yeh ; Chih-Chung Huang

Ultrasonic Nakagami images can complement conventional B-mode images for scatterer characterization. White noise in anechoic areas leads to artifacts that affect the Nakagami image to characterize tissues. Artifact removal requires rejection of the white noise without deforming the backscattered waveform. This study proposes a noise-assisted correlation algorithm (NCA) and carries out simulations, phantom experiments, and clinical measurements to validate its feasibility and practicality. The simulation results show that the NCA can reject white noise in an anechoic area without any deformation of the backscattered waveforms. The results obtained from phantoms and tissues further demonstrate that the proposed NCA can suppress a Nakagami image artifact without changing the texture of the Nakagami image of the scattering background. The NCA is an essential algorithm to construct artifact-free Nakagami image for correctly reflecting scatterer properties of biological tissues.

Published in:

IEEE Transactions on Information Technology in Biomedicine  (Volume:16 ,  Issue: 3 )