By Topic

Subject-Specific Estimation of Central Aortic Blood Pressure Using an Individualized Transfer Function: A Preliminary Feasibility Study

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jin-Oh Hahn ; Department of Mechanical Engineering , University of Alberta, Edmonton, Canada ; Andrew T. Reisner ; Farouc A. Jaffer ; H. Harry Asada

This paper presents a new approach to the estimation of unknown central aortic blood pressure waveform from a directly measured peripheral blood pressure waveform, in which a physics-based model is employed to solve for a subject- and state-specific individualized transfer function (ITF). The ITF provides the means to estimate the unknown central aortic blood pressure from the peripheral blood pressure. Initial proof-of-principle for the ITF is demonstrated experimentally through an in vivo protocol. In swine subjects taken through wide range of physiologic conditions, the ITF was on average able to provide central aortic blood pressure waveforms more accurately than a nonindividualized transfer function. Its usefulness was most evident when the subject's pulse transit time deviated from normative values. In these circumstances, the ITF yielded statistically significant reductions over a nonindividualized transfer function in the following three parameters: 1) 30% reduction in the root-mean-squared error between estimated versus actual central aortic blood pressure waveform (p <; 10-4), 2) >;50% reduction in the error between estimated versus actual systolic and pulse pressures ( p <; 10), and 3) a reduction in the overall breakdown rate (i.e., the frequency of estimation errors >;3 mmHg, p <; 10-4). In conclusion, the ITF may offer an attractive alternative to existing methods that estimates the central aortic blood pressure waveform, and may be particularly useful in nonnormative physiologic conditions.

Published in:

IEEE Transactions on Information Technology in Biomedicine  (Volume:16 ,  Issue: 2 )