By Topic

Data-Driven Control for Relative Degree Systems via Iterative Learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Deyuan Meng ; Department of Systems and Control and the Seventh Research Division, Beihang University, Beijing, China ; Yingmin Jia ; Junping Du ; Fashan Yu

Iterative learning control (ILC) is a kind of effective data-driven method that is developed based on online and/or offline input/output data. The main purpose of this paper is to supply a unified 2-D analysis approach for both continuous-time and discrete-time ILC systems with relative degree. It is shown that the 2-D Roesser system framework can be established for general ILC systems regardless of relative degree, under which convergence conditions can be provided to guarantee both asymptotic stability and monotonic convergence of the ILC processes. In particular, conditions for the monotonic convergence of ILC can be given in terms of linear matrix inequalities, and formulas for the updating law can be derived simultaneously. Simulation results are presented to illustrate the effectiveness of ILC determined through the 2-D design approach in dealing with the higher order relative degree problem of ILC systems, as well as the robustness of such ILC against uncertainties.

Published in:

IEEE Transactions on Neural Networks  (Volume:22 ,  Issue: 12 )