By Topic

Trapped Flux and Levitation Properties of Multiseeded YBCO Bulks for HTS Magnetic Device Applications—Part I: Grain and Current Features

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)

The strongly connected or coupled grain boundaries (GBs) between adjacent grains and their macroembodiment as flowing intergrain supercurrents crossing the GBs inside multi- seeded bulk high-temperature superconductors were elucidated by trapped-flux evaluation. Trapped-fleld measurements, after cutting and polishing two multiseeded YBCO bulk samples, were conducted to present the existence of coupled GBs and their distribution along the c-axis growth. The intensive trapped-flux density observed near the GB areas inside the whole sample is direct evidence of a strongly connected or coupled GB. The relatively strong trapped flux near the GB areas and the significant improvement of the total trapped flux compared with the isolated single-grain bulks were ascribed to the intergrain supercurrent flowing across the GBs in large macroscopic loops with coordination of the intragrain supercurrent circulating in each grain of the multiseeded bulk. Based on the experimental results, a simplified simulation model that incorporates two forms of the intra- and inter supercurrents flowing inside the multiseeded bulk is introduced to reproduce the trapped-flux density features, and qualitative agreement is obtained by comparison with the experimental ones.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:22 ,  Issue: 2 )