Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

In-Situ Heat Capacity Measurement of Carbon Nanotubes Using Suspended Microstructure-Based Microcalorimetry

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wenzhou Ruan ; Inst. of Microelectron., Tsinghua Univ., Beijing, China ; Zheyao Wang ; Yuanchao Li ; Litian Liu

This paper reports a method for measuring the heat capacity of as-grown carbon nanotubes (CNTs) using a microcalorimeter. The microcalorimeter consists of a double-layer suspended silicon dioxide microstructure and two silicon resistors sandwiched in-between the silicon dioxide layers. CNTs for heat capacity measurement are locally synthesized on the surface of the microstructure using laser-assisted chemical vapor deposition. The CNTs and the microcalorimeter are heated to a high temperature with a silicon resistor, and the temperature of the microcalorimeter with CNTs is measured with using the other silicon resistor. The heat capacity of the CNTs is obtained by dividing the measured effective heating power by the rate of temperature increase. The suspended configuration and the low thermal conductivity of silicon dioxide achieve low thermal dissipation, which together with the minute thermal capacity enable significant temperature changes. Using this sensitive microcalorimeter, the heat capacity of as-grown CNTs, 6-14 nJ/K from 340 to 440 K, is measured in-situ without the need of CNT transfer and pretreatment, avoiding damage to the CNT samples. This microcalorimeter is also applicable to in-situ measurement of structure-related thermal properties of porous materials.

Published in:

Nanotechnology, IEEE Transactions on  (Volume:11 ,  Issue: 2 )