By Topic

Local Ordinal Contrast Pattern Histograms for Spatiotemporal, Lip-Based Speaker Authentication

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chi Ho Chan ; Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford, UK ; Budhaditya Goswami ; Josef Kittler ; William Christmas

Lip region deformation during speech contains biometric information and is termed visual speech. This biometric information can be interpreted as being genetic or behavioral depending on whether static or dynamic features are extracted. In this paper, we use a texture descriptor called local ordinal contrast pattern (LOCP) with a dynamic texture representation called three orthogonal planes to represent both the appearance and dynamics features observed in visual speech. This feature representation, when used in standard speaker verification engines, is shown to improve the performance of the lip-biometric trait compared to the state-of-the-art. The best baseline state-of-the-art performance was a half total error rate (HTER) of 13.35% for the XM2VTS database. We obtained HTER of less than 1%. The resilience of the LOCP texture descriptor to random image noise is also investigated. Finally, the effect of the amount of video information on speaker verification performance suggests that with the proposed approach, speaker identity can be verified with a much shorter biometric trait record than the length normally required for voice-based biometrics. In summary, the performance obtained is remarkable and suggests that there is enough discriminative information in the mouth-region to enable its use as a primary biometric trait.

Published in:

IEEE Transactions on Information Forensics and Security  (Volume:7 ,  Issue: 2 )
IEEE Biometrics Compendium
IEEE RFIC Virtual Journal
IEEE RFID Virtual Journal