Cart (Loading....) | Create Account
Close category search window
 

An Intelligent Quick Prediction Algorithm With Applications in Industrial Control and Loading Problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yong Yu ; Inst. of Textiles & Clothing, Hong Kong Polytech. Univ., Kowloon, China ; Tsan-Ming Choi ; Chi-Leung Hui

The Artificial Neural Network (ANN) and its variations have been well-studied for their applications in the prediction of industrial control and loading problems. Despite showing satisfactory performance in terms of accuracy, the ANN models are notorious for being slow compared to, e.g., the traditional statistical models. This substantially hinders ANN model's real-world applications in control and loading prediction problems. Recently a novel learning approach of ANN called Extreme Learning Machine (ELM) has emerged and it is proven to be very fast compared with the traditional ANN. In this paper, an Intelligent Quick Prediction Algorithm (IQPA), which employs an extended ELM (ELME) in producing fast, stable, and accurate prediction results for control and loading problems, is devised. This algorithm is versatile in which it can be used for short, medium to long-term predictions with both time series and non-time series data. Publicly available power plant operations and aircraft control data are employed for conducting analysis with this proposed novel model. Experimental results show that IQPA is effective and efficient, and can finish the prediction task with accurate results within a prespecified time limit.

Published in:

Automation Science and Engineering, IEEE Transactions on  (Volume:9 ,  Issue: 2 )

Date of Publication:

April 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.