By Topic

Digital Fractional Order Savitzky-Golay Differentiator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dali Chen ; Coll. of Inf. Sci. & Eng., Northeastern Univ., Shenyang, China ; Yang Quan Chen ; Dingyu Xue

This brief proposes a design method for a digital fractional order Savitzky-Golay differentiator (DFOSGD), which generalizes the Savitzky-Golay filter from the integer order to the fractional order for estimating the fractional order derivative of the contaminated signal. The proposed method calculates the moving window's weights using the polynomial least-squares method and the Riemann-Liouville fractional order derivative definition, and then computes the fractional order derivative of the given signal using the convolution between the weights and the signal, instead of the complex mathematical deduction. Hence, the computation time is greatly improved. Frequency-domain analysis reveals that the proposed differentiator is essentially a fractional order low-pass filter. Experiments demonstrate that the proposed DFOSGD can accurately estimate the fractional order derivatives of both noise-free signal and contaminated signal.

Published in:

Circuits and Systems II: Express Briefs, IEEE Transactions on  (Volume:58 ,  Issue: 11 )