Cart (Loading....) | Create Account
Close category search window
 

A Smart Health Monitoring Chair for Nonintrusive Measurement of Biological Signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hyun Jae Baek ; Grad. Program in Bioeng., Seoul Nat. Univ., Seoul, South Korea ; Gih Sung Chung ; Ko Keun Kim ; Kwang Suk Park

We developed nonintrusive methods for simultaneous electrocardiogram, photoplethysmogram, and ballistocardiogram measurements that do not require direct contact between instruments and bare skin. These methods were applied to the design of a diagnostic chair for unconstrained heart rate and blood pressure monitoring purposes. Our methods were operationalized through capacitively coupled electrodes installed in the chair back that include high-input impedance amplifiers, and conductive textiles installed in the seat for capacitive driven-right-leg circuit configuration that is capable of recording electrocardiogram information through clothing. Photoplethysmograms were measured through clothing using seat mounted sensors with specially designed amplifier circuits that vary in light intensity according to clothing type. Ballistocardiograms were recorded using a film type transducer material, polyvinylidenefluoride (PVDF), which was installed beneath the seat cover. By simultaneously measuring signals, beat-to-beat heart rates could be monitored even when electrocardiograms were not recorded due to movement artifacts. Beat-to-beat blood pressure was also monitored using unconstrained measurements of pulse arrival time and other physiological parameters, and our experimental results indicated that the estimated blood pressure tended to coincide with actual blood pressure measurements. This study demonstrates the feasibility of our method and device for biological signal monitoring through clothing for unconstrained long-term daily health monitoring that does not require user awareness and is not limited by physical activity.

Published in:

Information Technology in Biomedicine, IEEE Transactions on  (Volume:16 ,  Issue: 1 )

Date of Publication:

Jan. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.