By Topic

Robust data envelopment analysis based MCDM with the consideration of uncertain data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ke Wang ; School of Economics and Management, Beihang University, Beijing 100191, P. R. China; Department of Industrial and Enterprise Systems Engineering, University of Illinois at Urbana-Champaign, Urbana 61801, USA ; Fajie Wei

The application of data envelopment analysis (DEA) as a multiple criteria decision making (MCDM) technique has been gaining more and more attention in recent research. In the practice of applying DEA approach, the appearance of uncertainties on input and output data of decision making unit (DMU) might make the nominal solution infeasible and lead to the efficiency scores meaningless from practical view. This paper analyzes the impact of data uncertainty on the evaluation results of DEA, and proposes several robust DEA models based on the adaptation of recently developed robust optimization approaches, which would be immune against input and output data uncertainties. The robust DEA models developed are based on input-oriented and outputoriented CCR model, respectively, when the uncertainties appear in output data and input data separately. Furthermore, the robust DEA models could deal with random symmetric uncertainty and unknown-but-bounded uncertainty, in both of which the distributions of the random data entries are permitted to be unknown. The robust DEA models are implemented in a numerical example and the efficiency scores and ran kings of these models are compared. The results indicate that the robust DEA approach could be a more reliable method for efficiency evaluation and ranking in MCDM problems.

Published in:

Journal of Systems Engineering and Electronics  (Volume:21 ,  Issue: 6 )