By Topic

Knowledge-based bridge detection from SAR images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wang Wenguang ; School of Electronic and Information Engineering, Beihang Univ., Beijing 100191, P. R. China ; Sun Jinping ; Hu Ru ; Mao Shiy

A utomatic bridge detection is an important application of SAR images. Differed from the classical CFAR method, a new knowledge-based bridge detection approach is proposed. The method not only uses the backscattering intensity difference between targets and background but also applies the contextual information and spatial relationship between objects. According to bridges' special characteristics and scattering properties in SAR images, the new knowledge-based method includes three processes: river segmentation, potential bridge areas detection and bridge discrimination. The application to AIRSAR data shows that the new method is not sensitive to rivers' shape. Moreover, this method can detect bridges successfully when river segmentation is not very exact and is more robust than the radius projection method.

Published in:

Journal of Systems Engineering and Electronics  (Volume:20 ,  Issue: 5 )