By Topic

An analytical evaluation of the factor k2 for protective conductors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Massimo Mitolo ; Electrical Department of Chu & Gassman, 559 Union Ave., Middlesex NJ, 08846, USA ; Michele Tartaglia

At the occurrence of phase-to-ground faults, abnormal levels of thermal energy I2t, due to the Joule effect, will be developed during the clearing time that protective devices take to operate. The I2t, also referred to as specific energy or Joule Integral, is accumulated within the elements forming the fault-loop, such as the protective conductors (also referred to as equipment grounding conductors), responsible to return ground-fault currents to the source. As a consequence, the temperature of these conductors elevates and may exceed, in the case of an incorrect design, the maximum value that their insulation can withstand. This dangerous situation can cause the failure of the conductor insulation and/or trigger fires in neighboring materials. The maximum I2t that protective conductors can endure is, therefore, crucial in order to guarantee the electrical safety. The parameters on which the maximum I2t depends are described by the factor k2, which will be herein discussed and analytically evaluated. The intention of the authors is to provide a theoretical support to the Power Systems Grounding Working Group of the Technical Books Coordinating Committee IEEE P3003.2 “Recommended Practice for Equipment Grounding and Bonding in Industrial and Commercial Power Systems”; the working group is currently elaborating a dot standard based on the IEEE standard 142-2007, also referred to as the Green Book. To this purpose, a comparison with existing formulae, currently present in codes, standards of the International Electrotechnical Commission (IEC) and of the IEEE, as well as in literature, will be also presented.

Published in:

Industry Applications Society Annual Meeting (IAS), 2011 IEEE

Date of Conference:

9-13 Oct. 2011