Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Application of Computational Fluid Dynamics to Reduce the New Product Development Cycle Time of the {\rm SF}_{6} Gas Circuit Breaker

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Pawar, S. ; Global R&D Centre, Crompton Greaves Ltd., Mumbai, India ; Joshi, K. ; Andrews, L. ; Kale, S.

This paper describes thermal modeling, using computational fluid dynamics (CFD), to predict the temperature rise of a high-voltage SF6 gas circuit breaker during a heat-run test. In electrical equipment, maximum temperature rise in various components is limited by their material properties and, hence, the heat-run test forms part of type test. A methodology to predict the temperature rise at the design stage is developed using ANSYS-CFX and found to be beneficial to reduce the number of heat-run tests during the product development process. The developed methodology has been implemented on a 72.5-kV SF6 gas circuit breaker and validated with the experimental temperature rise results of the existing design at two current ratings: 1000 A and 2000 A. The methodology was further used to predict thermal performance of the breaker at a higher current rating of 3150 A. The prediction helped to understand temperature rise in various components and hot-spot locations. Various design modifications were then tested virtually to evaluate the temperature rise. Thereafter, the final modified design where the temperature rise of all the components was within the permissible limits and which also satisfied other constraints of manufacturing feasibility and cost was fabricated and physically tested. Good agreement is found between the CFD and experimental results.

Published in:

Power Delivery, IEEE Transactions on  (Volume:27 ,  Issue: 1 )