By Topic

Robust Image Deblurring With an Inaccurate Blur Kernel

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hui Ji ; Department of Mathematics, National University of Singapore, Singapore ; Kang Wang

Most existing nonblind image deblurring methods assume that the blur kernel is free of error. However, it is often unavoidable in practice that the input blur kernel is erroneous to some extent. Sometimes, the error could be severe, e.g., for images degraded by nonuniform motion blurring. When an inaccurate blur kernel is used as the input, significant distortions will appear in the image recovered by existing methods. In this paper, we present a novel convex minimization model that explicitly takes account of error in the blur kernel. The resulting minimization problem can be efficiently solved by the so-called accelerated proximal gradient method. In addition, a new boundary extension scheme is incorporated in the proposed model to further improve the results. The experiments on both synthesized and real images showed the efficiency and robustness of our algorithm to both the image noise and the model error in the blur kernel.

Published in:

IEEE Transactions on Image Processing  (Volume:21 ,  Issue: 4 )