By Topic

Some Fundamental Results on Base Station Movement Problem for Wireless Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yi Shi ; Bradley Dept. of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA ; Y. Thomas Hou

The benefits of using a mobile base station to prolong sensor network lifetime have been well recognized. However, due to the complexity of the problem (time-dependent network topology and traffic routing), theoretical performance limits and provably optimal algorithms remain difficult to develop. This paper fills this important gap by contributing some theoretical results regarding the optimal movement of a mobile base station. Our main result hinges upon two key intermediate results. In the first result, we show that a time-dependent joint base station movement and flow routing problem can be transformed into a location-dependent problem. In the second result, we show that, for (1- \varepsilon ) optimality, the infinite possible locations for base station movement can be reduced to a finite set of locations via several constructive steps [i.e., discretization of energy cost through a geometric sequence, division of a disk into a finite number of subareas, and representation of each subarea with a fictitious cost point (FCP)]. Subsequently, for each FCP, we can obtain the optimal sojourn time for the base station (as well as the corresponding location-dependent flow routing) via a simple linear program. We prove that the proposed solution can guarantee the achieved network lifetime is at least (1- \varepsilon ) of the maximum (unknown) network lifetime, where \varepsilon can be made arbitrarily small depending on the required precision.

Published in:

IEEE/ACM Transactions on Networking  (Volume:20 ,  Issue: 4 )