By Topic

Operation of Wind-Turbine-Driven DFIG Systems Under Distorted Grid Voltage Conditions: Analysis and Experimental Validations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hailiang Xu ; College of Electrical Engineering , Zhejiang University, Hangzhou, China ; Jiabing Hu ; Yikang He

This paper presents enhanced control strategies for doubly fed induction generator (DFIG)-based wind power generation systems under distorted grid voltage conditions. The mathematical model of DFIG, in view of the fifth- and seventh-order components of grid voltage harmonics, is proposed and analyzed in detail. Based on the analytical model, further studies are conducted on the distortions of stator/rotor currents and the oscillations in the stator active/reactive powers as well as the electromagnetic torque, where the impact of DFIG's load conditions is considered. Meanwhile, alternative rotor current references are calculated to enhance the uninterruptable operation capability of the wind-turbine-driven DFIG systems under distorted grid conditions. An improved software PLL is designed, which is capable of accurately and rapidly tracking the frequency and phase angle of the fundamental grid voltage under distorted grid conditions. A proportional integral plus resonant (PI-R) current controller in the synchronously rotating (dq) reference frame is employed to simultaneously regulate the fundamental and harmonic components of rotor currents without any sequential component decomposition. Experiment results on a 3-kW DFIG prototype demonstrate the correctness of the analytical results and the effectiveness of the software PLL and PI-R current controller when the grid voltage is distorted.

Published in:

IEEE Transactions on Power Electronics  (Volume:27 ,  Issue: 5 )