By Topic

Switched-Capacitor Converter State Model Generator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Henry, J.M. ; Sandia Nat. Labs., Albuquerque, NM, USA ; Kimball, J.W.

Efficient analysis techniques for complex switched-capacitor (SC) converters are essential design tools for the development of practical SC converters. Techniques that use state-space equations based on conventional circuit analysis methods have proven effective in modeling the practical performance of SC converters. Iterative methods of design based on these analysis techniques require the formulation of many Kirchhoff voltage and current equations, which is time consuming if derived manually. Here, an algorithm is introduced to automate the creating of the matrices required for state-space-based modeling of SC converters. The state equations are generated algorithmically, given a standard node incidence matrix generated from a user-defined netlist. The algorithm enables a designer to quickly iterate SC converter design solutions based on their predicted performance. The resulting models are compared against manually generated models, simulations, and experimental results.

Published in:

Power Electronics, IEEE Transactions on  (Volume:27 ,  Issue: 5 )