By Topic

Multiphase Level Set Model with Local K-means Energy for Histology Image Segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lei He ; Nat. Libr. of Med., Nat. Inst. of Health, Bethesda, MD, USA ; L. Rodney Long ; Sameer Antani ; George R. Thoma

In this paper we present a multiphase level set model for histology image segmentation. Global K-means energy is weighted by a Gaussian kernel to cluster image pixels in local neighborhoods. We group these local clusters into different source classes using a multiphase level set model to produce the final segmentation results. Our energy functional is formulated as the integral of local K-means energies across the entire image. Unlike current local region-based active contour methods that update the pixel neighborhood distributions (e.g. local intensity means) in each iteration, we estimate these statistics before contour evolution for more efficient computation. In addition, such pre-derived local intensity distributions enable a model without initial contour selection, i.e., the level set functions can be initialized with a random constant instead of a distance map. In this way our model ameliorates the initialization sensitivity problem of most active contour methods. Experiments on the National Cancer Institute ALTS histology images show the improved performance of our approach over standard multithresholding and K-means clustering, as well as state-of-the-art active contours, mean shift clustering, and Markov random field-based pixel labeling methods.

Published in:

Healthcare Informatics, Imaging and Systems Biology (HISB), 2011 First IEEE International Conference on

Date of Conference:

26-29 July 2011