By Topic

An Iterative L_{1} -Based Image Restoration Algorithm With an Adaptive Parameter Estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Laura B. Montefusco ; Department of Mathematics, University of Bologna, Bologna, Italy ; Damiana Lazzaro

Regularization methods for the solution of ill-posed inverse problems can be successfully applied if a right estimation of the regularization parameter is known. In this paper, we consider the L1-regularized image deblurring problem and evaluate its solution using the iterative forward-backward splitting method. Based on this approach, we propose a new adaptive rule for the estimation of the regularization parameter that, at each iteration, dynamically updates the parameter value, following the evolution of the objective functional. The iterative algorithm automatically stops, without requiring any assumption about the perturbation process, when the parameter has reached a seemingly near optimal value. In spite of the fact that the optimality of this value has not yet been theoretically proved, a large number of numerical experiments confirm that the proposed rule yields restoration results competitive with those of the best state-of-the-art algorithms.

Published in:

IEEE Transactions on Image Processing  (Volume:21 ,  Issue: 4 )