By Topic

DRAM-Based Statistics Counter Array Architecture With Performance Guarantee

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hao Wang ; Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA, USA ; Haiquan Zhao ; Bill Lin ; Jun Xu

The problem of efficiently maintaining a large number (say millions) of statistics counters that need to be updated at very high speeds (e.g., 40 Gb/s) has received considerable research attention in recent years. This problem arises in a variety of router management and data streaming applications where large arrays of counters are used to track various network statistics and implement various counting sketches. It proves too costly to store such large counter arrays entirely in SRAM, while DRAM is viewed as too slow for providing wirespeed updates at such high line rates. In particular, we propose a DRAM-based counter architecture that can effectively maintain wirespeed updates to large counter arrays. The proposed approach is based on the observation that modern commodity DRAM architectures, driven by aggressive performance roadmaps for consumer applications, such as video games, have advanced architecture features that can be exploited to make a DRAM-based solution practical. In particular, we propose a randomized DRAM architecture that can harness the performance of modern commodity DRAM offerings by interleaving counter updates to multiple memory banks. The proposed architecture makes use of a simple randomization scheme, a small cache, and small request queues to statistically guarantee a near-perfect load-balancing of counter updates to the DRAM banks. The statistical guarantee of the proposed randomized scheme is proven using a novel combination of convex ordering and large deviation theory. Our proposed counter scheme can support arbitrary increments and decrements at wirespeed, and they can support different number representations, including both integer and floating point number representations.

Published in:

IEEE/ACM Transactions on Networking  (Volume:20 ,  Issue: 4 )