We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

An Edge-Adapting Laplacian Kernel For Nonlinear Diffusion Filters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hajiaboli, M.R. ; Dept. of Electr. & Comput. Eng., Concordia Univ., Montreal, QC, Canada ; Ahmad, M.O. ; Wang, C.

In this paper, first, a new Laplacian kernel is developed to integrate into it the anisotropic behavior to control the process of forward diffusion in horizontal and vertical directions. It is shown that, although the new kernel reduces the process of edge distortion, it nonetheless produces artifacts in the processed image. After examining the source of this problem, an analytical scheme is devised to obtain a spatially varying kernel that adapts itself to the diffusivity function. The proposed spatially varying Laplacian kernel is then used in various nonlinear diffusion filters starting from the classical Perona-Malik filter to the more recent ones. The effectiveness of the new kernel in terms of quantitative and qualitative measures is demonstrated by applying it to noisy images.

Published in:

Image Processing, IEEE Transactions on  (Volume:21 ,  Issue: 4 )