By Topic

Emotional speech corpus of Croatian language

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Dropuljic, B. ; Fac. of Electr. Eng. & Comput., Univ. of Zagreb, Zagreb, Croatia ; Chmura, M.T. ; Kolak, A. ; Petrinovic, D.

As a first step in developing an emotion recognition system from human voice, it is necessary to collect relevant set of emotionally rich utterances that will be used for system training. Thus, a first emotional speech corpus of Croatian language (KEG) was built and annotated. The collection and annotation process together with some interesting statistical properties of the designed corpus are described in this paper. Utterances were collected from both male and female speakers, from child age to adults, verbally expressing their emotions. Materials were taken from Internet and other public media sources, with the total duration of approximately 40 minutes. Emotion classification used for annotation has been based on 5 discrete emotional states: happiness, sadness, fear, anger and neutral state. For each of the non-neutral emotional states, the perceived intensity was also annotated in 10 steps. Preliminary KEG evaluation was performed by building and testing an emotion recognition system based on this specific corpus. Initial results are presented in this paper.

Published in:

Image and Signal Processing and Analysis (ISPA), 2011 7th International Symposium on

Date of Conference:

4-6 Sept. 2011