By Topic

A New Intelligence-Based Approach for Computer-Aided Diagnosis of Dengue Fever

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Vadrevu Sree Hari Rao ; Department of Mathematics, Jawaharlal Nehru Technological University, Hyderabad, India ; Mallenahalli Naresh Kumar

Identification of the influential clinical symptoms and laboratory features that help in the diagnosis of dengue fever (DF) in early phase of the illness would aid in designing effective public health management and virological surveillance strategies. Keeping this as our main objective, we develop in this paper a new computational intelligence-based methodology that predicts the diagnosis in real time, minimizing the number of false positives and false negatives. Our methodology consists of three major components: 1) a novel missing value imputation procedure that can be applied on any dataset consisting of categorical (nominal) and/or numeric (real or integer); 2) a wrapper-based feature selection method with genetic search for extracting a subset of most influential symptoms that can diagnose the illness; and 3) an alternating decision tree method that employs boosting for generating highly accurate decision rules. The predictive models developed using our methodology are found to be more accurate than the state-of-the-art methodologies used in the diagnosis of the DF.

Published in:

IEEE Transactions on Information Technology in Biomedicine  (Volume:16 ,  Issue: 1 )