By Topic

A linguistic feature based text clustering method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Kansheng Shi ; Shanghai Jiaotong Univ., Shanghai, China ; Lemin Li ; Jie He ; Haitao Liu
more authors

The traditional K-means algorithm is sensitive to the initial point, easy to fall into local optimum. In order to avoid this kind of flaw, an improved K-means text clustering method WIKTCM is proposed. The new method creates an innovative initial centers selection method and accommodates the contribution of characteristics of different parts of speech to the text. In addition, the impact of outliers is considered. Experimental results show that the new method has better clustering results.

Published in:

Cloud Computing and Intelligence Systems (CCIS), 2011 IEEE International Conference on

Date of Conference:

15-17 Sept. 2011