By Topic

Study of Attenuation and Dispersion Through the Skin in Intrabody Communications Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Callejon, M.A. ; Biomed. Eng. Group, Univ. of Seville, Seville, Spain ; Roa, L.M. ; Reina-Tosina, J. ; Naranjo-Hernandez, D.

Intrabody communication (IBC) is a technique that uses the human body as a transmission medium for electrical signals to connect wireless body sensors, e.g., in biomedical monitoring systems. In this paper, we propose a simple, but accurate propagation model through the skin based on a distributed-parameter circuit in order to obtain general expressions that could assist in the design of IBC systems. In addition, the model is based on the major electrophysiological properties of the skin. We have found the attenuation and dispersion parameters and they have been successfully compared with several published results, thus showing the tuning capability of the model to different experimental conditions. Finally, we have evaluated different digital modulation schemes in order to assess the tradeoffs between symbol rate, bit error rate, and distance between electrodes of the skin communication channel.

Published in:

Information Technology in Biomedicine, IEEE Transactions on  (Volume:16 ,  Issue: 1 )