By Topic

Human attribute analysis using a top-view camera based on multi-stage classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Toshihiko Yamasaki ; Department of Information and Communication Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan ; Tomoaki Matsunami

This paper proposes pedestrians' attribute analysis such as gender and whether they have bags with them based on multi-layer classification. One of the technically challenging issues is we use only top-view camera images to protect the privacy of the pedestrians. The shape features over the frames are extracted by bag-of-features (BoF) using histogram of oriented gradients (HoG) vectors with the optimized parameters. Then, multiple classifiers using support vector machine (SVM) were generated by changing the parameters for the feature generation. A set of classification results using the multiple classifiers is fed to the second stage classifier to obtain the final results. The experimental results using 60-minute video captured at Haneda Airport, Japan, show that the accuracies for the gender classification and the with/without baggage classification were 95.8% and 97.2%, respectively with low false positive/negative rates, which is a significant improvement from our previous work which yielded 68.5% and 78.8% of accuracy, respectively.

Published in:

Distributed Smart Cameras (ICDSC), 2011 Fifth ACM/IEEE International Conference on

Date of Conference:

22-25 Aug. 2011