Cart (Loading....) | Create Account
Close category search window
 

Carbon-capture and storage benefits: NOx reduction in O2/CO2 pulverized fuel combustion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zailani, R. ; Fak. Kejuruteraan Mekanikal, Univ. Teknol. MARA, Shah Alam, Malaysia ; Hao Liu ; Gibbs, B.M.

Fuel combustion in a mixture of O2/CO2-recycled is an emerging technology for cost-effective power generation with carbon capture and sequestration that has extra benefits of NOx emission reductions and lower flue gas cleanup cost. This paper presents experimental results of pulverized coal combustion in a 20 kW furnace on combustion in air and O2/CO2 mixtures. The effectiveness of oxidant staging on reducing NOx emissions was investigated for combustion in O2/CO2 mixtures in comparison to that in air combustion. The fate of recycled NOx in combustion with various oxidants and combustion conditions was also investigated. The results show that simply replacing the N2 in the combustion air with CO2 will result in a significant decrease of combustion gas temperatures. However, with a same firing rate and combustion stoichiometry, coal combustion in 30:70-O2/CO2 produced a similar flame temperature profiles to those in air combustion, while producing a significantly lower furnace NOx emission and a higher char burnout. The staged combustion tests show that oxidant-staging is a very effective method in reducing NOx emissions for coal combustion in 30:70-O2/CO2, and can be more effective than in staged-air combustion. The recycled NOx tests results show that the reduction efficiency of the recycled NO depends on the combustion media, combustion conditions and NOx recycling injection locations, and is influenced by the coal properties but not by the recycled NOx concentrations. Compared to those in air combustion, NOx reduction efficiency in 30:70-O2:CO2 is more sensitive to coal properties, particularly the coal fuel ratio.

Published in:

Clean Energy and Technology (CET), 2011 IEEE First Conference on

Date of Conference:

27-29 June 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.