By Topic

Energy-Efficient Context Classification With Dynamic Sensor Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lawrence K. Au ; Electrical Engineering, UCLA, Los Angeles, United States ; Alex A. T. Bui ; Maxim A. Batalin ; William J. Kaiser

Energy efficiency has been a longstanding design challenge for wearable sensor systems. It is especially crucial in continuous subject state monitoring due to the ongoing need for compact sizes and better sensors. This paper presents an energy-efficient classification algorithm, based on partially observable Markov decision process (POMDP). In every time step, POMDP dynamically selects sensors for classification via a sensor selection policy. The sensor selection problem is formalized as an optimization problem, where the objective is to minimize misclassification cost given some energy budget. State transitions are modeled as a hidden Markov model (HMM), and the corresponding sensor selection policy is represented using a finite-state controller (FSC). To evaluate this framework, sensor data were collected from multiple subjects in their free-living conditions. Relative accuracies and energy reductions from the proposed method are compared against naïve Bayes (always-on) and simple random strategies to validate the relative performance of the algorithm. When the objective is to maintain the same classification accuracy, significant energy reduction is achieved.

Published in:

IEEE Transactions on Biomedical Circuits and Systems  (Volume:6 ,  Issue: 2 )