Cart (Loading....) | Create Account
Close category search window

Study of transformer resonant overvoltages caused by cable-transformer high-frequency interaction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Gustavsen, B. ; SINTEF Energy Research

Summary form only given. Power transformers can fail from dielectric stresses caused by electromagnetic transients. In this paper we focus on a special phenomenon where excessive overvoltages arise due to resonance. This situation can take place when a transformer on the high-voltage side is connected to a cable and the low-voltage side is unloaded. Very high overvoltages can then result on the low-voltage side from transient events that cause a weakly attenuated overvoltage on the cable with a dominant frequency matching a resonance peak in the transformer voltage ratio. Laboratory tests on a 11 kV/230 V distribution transformer show that a step voltage excitation on a 27-m cable produces a 24 p.u. overvoltage on the open low-voltage side. The voltage waveforms are accurately reproduced by a black-box model obtained from frequency sweep measurements. Simulations show that overvoltages as high as 43 p.u. could occur with the most unfavorable cable length. It is further shown that the following situations can lead to high overvoltages on an unloaded transformer low-voltage side: 1) ground fault initiation at the far cable end, 2) cable energization from a busbar with several other cables connected, and 3) cable energization from another cable of same length.

Published in:

Power and Energy Society General Meeting, 2011 IEEE

Date of Conference:

24-29 July 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.