By Topic

System-wide inertial response from fixed speed and variable speed wind turbines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lisa Ruttledge ; School of Electrical, Electronic and Mechanical Engineering, University College Dublin, Dublin, Ireland ; Damian Flynn

As wind penetration levels on power systems increase worldwide, the dynamic characteristics of these systems are changing due to the displacement of synchronous generation. One issue, of particular concern, is the resulting reduction in system inertia. Modern, variable speed wind turbines are controlled by power electronics and so do not inherently contribute to the inertial response of the system. Such devices can however be fitted with a control loop which provides an active power response to significant frequency deviations, similar to the inertial response of fixed speed wind turbines and synchronous generation. However, the response of variable speed turbines is dependent on local wind speeds and so cannot be quantified deterministically by system operators. This paper examines the potential for wind generation to contribute to system inertial response and considers the aggregated inertial response capabilities of fixed speed and variable speed wind generation.

Published in:

2011 IEEE Power and Energy Society General Meeting

Date of Conference:

24-29 July 2011