By Topic

In situ method of densification for powder-based piezoelectric thick films for microelectromechanical system applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jae Hong Park ; Div. of Nano-Convergence Technol., Korea Nat. NanoFab Center, Daejeon, South Korea ; Hyoung-Ho Park

Piezoelectric (PZT) (Pb(Zr0.52Ti0.48)O3) thick film-based microtransducers demonstrate excellent piezoelectric performances. PZT thick films on Si-based substrate can be used as piezoelectric actuators and sensors with the introduction of microelectromechanical system technology and the screen printing method. However, the thick films made just by the screen printing method have high porosity compared with bulk product, and the PZT thick films on Si-based substrate have problems regarding degradation of active materials and interface properties owing to inter-diffusion or reaction between Si substrate and PZT materials at high temperature for sintering. Thus, the authors have fabricated screen printed PZT thick films on Si substrate using the screen printing method and sol infiltration for enhancing densification. Ethanol-based photo-cross-linkable sol and conventional diol-based sol were used to compare influence of patterning process. Thick films with relative high densities at low temperature, 800°C and without inter-diffusion and reaction between the layers and thick film were accomplished. Also, it was revealed that the PZT thick film treated by ethanol-based photo-cross-linkable sol showed better electrical properties as well as excellent patternability.

Published in:

Micro & Nano Letters, IET  (Volume:6 ,  Issue: 9 )