By Topic

Modeling the Temporal Evolution of Acoustic Parameters for Speech Emotion Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ntalampiras, S. ; Electr. & Comput. Eng. Dept., Univ. of Patras, Patras, Greece ; Fakotakis, N.

During recent years, the field of emotional content analysis of speech signals has been gaining a lot of attention and several frameworks have been constructed by different researchers for recognition of human emotions in spoken utterances. This paper describes a series of exhaustive experiments which demonstrate the feasibility of recognizing human emotional states via integrating low level descriptors. Our aim is to investigate three different methodologies for integrating subsequent feature values. More specifically, we used the following methods: 1) short-term statistics, 2) spectral moments, and 3) autoregressive models. Additionally, we employed a newly introduced group of parameters which is based on the wavelet decomposition. These are compared with a baseline set comprised of descriptors which are usually used for the specific task. Subsequently, we experimented on fusing these sets on the feature and log-likelihood levels. The classification step is based on hidden Markov models, while several algorithms which can handle redundant information were used during fusion. We report results on the well-known and freely available database BERLIN using data of six emotional states. Our experiments show the importance of including information which is captured by the set based on multiresolution analysis and the efficacy of merging subsequent feature values.

Published in:

Affective Computing, IEEE Transactions on  (Volume:3 ,  Issue: 1 )