Cart (Loading....) | Create Account
Close category search window
 

The Achievable Distortion Region of Sending a Bivariate Gaussian Source on the Gaussian Broadcast Channel

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tian, C. ; AT&T Labs.-Res., Florham Park, NJ, USA ; Diggavi, S. ; Shamai, S.

We provide a complete characterization of the achievable distortion region for the problem of sending a bivariate Gaussian source over bandwidth-matched Gaussian broadcast channels, where each receiver is interested in only one component of the source. This setting naturally generalizes the simple single Gaussian source bandwidth-matched broadcast problem for which the uncoded scheme is known to be optimal. We show that a hybrid scheme can achieve the optimum for the bivariate case, but neither an uncoded scheme alone nor a separation-based scheme alone is sufficient. We further show that in this joint source channel coding setting, the Gaussian scenario is the worst scenario among the sources and channel noises with the same covariances.

Published in:

Information Theory, IEEE Transactions on  (Volume:57 ,  Issue: 10 )

Date of Publication:

Oct. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.