Scheduled System Maintenance on December 17th, 2014:
IEEE Xplore will be upgraded between 2:00 and 5:00 PM EST (18:00 - 21:00) UTC. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Covering point patterns

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lapidoth, A. ; ETH Zurich, Zurich, Switzerland ; Malar, A. ; Ligong Wang

A source generates a “point pattern” consisting of a finite number of points in an interval. Based on a binary description of the point pattern, a reconstructor must produce a “covering set” that is guaranteed to contain the pattern. We study the optimal trade-off (as the length of the interval tends to infinity) between the description length and the least average Lebesgue measure of the covering set. The trade-off is established for point patterns that are generated by a Poisson process. Such point patterns are shown to be the most difficult to describe. We also study a Wyner-Ziv version of this problem, where some of the points in the pattern are known to the reconstructor but not to the encoder. We show that this scenario is as good as when they are known to both encoder and reconstructor.

Published in:

Information Theory Proceedings (ISIT), 2011 IEEE International Symposium on

Date of Conference:

July 31 2011-Aug. 5 2011