Cart (Loading....) | Create Account
Close category search window
 

Cognitive radio based hierarchical communications infrastructure for smart grid

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Rong Yu ; Guangdong Univ. of Technol., Guangzhou, China ; Yan Zhang ; Gjessing, S. ; Chau Yuen
more authors

The current centrally controlled power grid is undergoing a drastic change in order to deal with increasingly diversified challenges, including environment and infrastructure. The next-generation power grid, known as the smart grid, will be realized with proactive usage of state-of-the-art technologies in the areas of sensing, communications, control, computing, and information technology. In a smart power grid, an efficient and reliable communication architecture plays a crucial role in improving efficiency, sustainability, and stability. In this article, we first identify the fundamental challenges in the data communications for the smart grid and introduce the ongoing standardization effort in the industry. Then we present an unprecedented cognitive radio based communications architecture for the smart grid, which is mainly motivated by the explosive data volume, diverse data traffic, and need for QoS support. The proposed architecture is decomposed into three subareas: cognitive home area network, cognitive neighborhood area network, and cognitive wide area network, depending on the service ranges and potential applications. Finally, we focus on dynamic spectrum access and sharing in each subarea. We also identify a very unique challenge in the smart grid, the necessity of joint resource management in the decomposed NAN and WAN geographic subareas in order to achieve network scale performance optimization. Illustrative results indicate that the joint NAN/WAN design is able to intelligently allocate spectra to support the communication requirements in the smart grid.

Published in:

Network, IEEE  (Volume:25 ,  Issue: 5 )

Date of Publication:

September-October 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.