By Topic

Malicious Data Attacks on the Smart Grid

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kosut, O. ; Massachusetts Inst. of Technol., Cambridge, MA, USA ; Liyan Jia ; Thomas, R.J. ; Lang Tong

Malicious attacks against power systems are investigated, in which an adversary controls a set of meters and is able to alter the measurements from those meters. Two regimes of attacks are considered. The strong attack regime is where the adversary attacks a sufficient number of meters so that the network state becomes unobservable by the control center. For attacks in this regime, the smallest set of attacked meters capable of causing network unobservability is characterized using a graph theoretic approach. By casting the problem as one of minimizing a supermodular graph functional, the problem of identifying the smallest set of vulnerable meters is shown to have polynomial complexity. For the weak attack regime where the adversary controls only a small number of meters, the problem is examined from a decision theoretic perspective for both the control center and the adversary. For the control center, a generalized likelihood ratio detector is proposed that incorporates historical data. For the adversary, the trade-off between maximizing estimation error at the control center and minimizing detection probability of the launched attack is examined. An optimal attack based on minimum energy leakage is proposed.

Published in:

Smart Grid, IEEE Transactions on  (Volume:2 ,  Issue: 4 )