By Topic

A Study of Collapse in Bare Bones Particle Swarm Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Blackwell, T. ; Dept. of Comput., Goldsmiths Univ. of London, London, UK

The dynamic update rule of particle swarm optimization is formulated as a second-order stochastic difference equation and general relations are derived for search focus, search spread, and swarm stability at stagnation. The relations are applied to three particular particle swarm optimization (PSO) implementations, the standard PSO of Clerc and Kennedy, a PSO with discrete recombination, and the Bare Bones swarm. The simplicity of the Bare Bones swarm facilitates theoretical analysis and a further no-collapse condition is derived. A series of experimental trials confirms that Bare Bones situated at the edge of collapse is comparable to other PSOs, and that performance can be still further improved with the use of an adaptive distribution. It is conjectured that, subject to spread, stability and no-collapse, there is a single encompassing particle swarm paradigm, and that an important aspect of parameter tuning within any particular manifestation is to remove any deleterious behavior that ensues from the dynamics.

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:16 ,  Issue: 3 )