By Topic

Real Multitouch Panel Without Ghost Points Based on Resistive Patterning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wen-Yang Chang ; Dept. of Mech. & Comput.-Aided Eng., Nat. Formosa Univ., Yunlin, Taiwan ; Heng-Ju Lin

The real multitouch panel without ghost points is investigated using the structural patterns and an algorithm matrix of the two configurations. The pixels of patterns on the multitouch panel include virtual high and low resistances. The algorithm matrix with two configurations of equivalent circuit is derived using a voltage divider rule for array scanning. The fabrication process of structural patterns is carried out using microelectromechanical systems technology. The optical transmittance and absorbance of the multitouch panel in the UV, Vis, and IR regions are measured using a spectrophotometer. The multitouch panel, containing an array of 30 × 30, has a pixel size of 2 × 2 mm2 and a pitch distance of 2 mm. The average values of high and low impedances are 53.23 and 9.3 kΩ, respectively. The maximum transmittance is about 74.2% at the wavelength of 692 nm. The multitouch panel based on high and low impedance patterns has good adjacent touch resolution for reality multitouch applications. In addition, the patterned design and the algorithm matrix provide unlimited multitouch points and avoid the ghost points.

Published in:

Journal of Display Technology  (Volume:7 ,  Issue: 11 )