Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

Variations in Performance and Scalability When Migrating n-Tier Applications to Different Clouds

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Jayasinghe, D. ; Center for Exp. Res. in Comput. Syst., Georgia Inst. of Technol., Atlanta, GA, USA ; Malkowski, S. ; Qingyang Wang ; Li, J.
more authors

The increasing popularity of computing clouds continues to drive both industry and research to provide answers to a large variety of new and challenging questions. We aim to answer some of these questions by evaluating performance and scalability when an n-tier application is migrated from a traditional datacenter environment to an IaaS cloud. We used a representative n-tier macro-benchmark (RUBBoS) and compared its performance and scalability in three different test beds: Amazon EC2, Open Cirrus (an open scientific research cloud), and Emulab (academic research test bed). Interestingly, we found that the best-performing configuration in Emulab can become the worst-performing configuration in EC2. Subsequently, we identified the bottleneck components, high context switch overhead and network driver processing overhead, to be at the system level. These overhead problems were confirmed at a finer granularity through micro-benchmark experiments that measure component performance directly. We describe concrete alternative approaches as practical solutions for resolving these problems.

Published in:

Cloud Computing (CLOUD), 2011 IEEE International Conference on

Date of Conference:

4-9 July 2011