By Topic

Spatially Adaptive Block-Based Super-Resolution

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Heng Su ; Department of Automation, Tsinghua University, Beijing, China ; Liang Tang ; Ying Wu ; Daniel Tretter
more authors

Super-resolution technology provides an effective way to increase image resolution by incorporating additional information from successive input images or training samples. Various super-resolution algorithms have been proposed based on different assumptions, and their relative performances can differ in regions of different characteristics within a single image. Based on this observation, an adaptive algorithm is proposed in this paper to integrate a higher level image classification task and a lower level super-resolution process, in which we incorporate reconstruction-based super-resolution algorithms, single-image enhancement, and image/video classification into a single comprehensive framework. The target high-resolution image plane is divided into adaptive-sized blocks, and different suitable super-resolution algorithms are automatically selected for the blocks. Then, a deblocking process is applied to reduce block edge artifacts. A new benchmark is also utilized to measure the performance of super-resolution algorithms. Experimental results with real-life videos indicate encouraging improvements with our method.

Published in:

IEEE Transactions on Image Processing  (Volume:21 ,  Issue: 3 )