By Topic

Block-Orthogonal Space–Time Code Structure and Its Impact on QRDM Decoding Complexity Reduction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tian Peng Ren ; Coll. of Electron. Sci. & Eng., Nat. Univ. of Defense Technol., Changsha, China ; Yong Liang Guan ; Chau Yuen ; Er Yang Zhang

Full-rate space time codes (STCs) with rate number of transmit antennas have high multiplexing gain, but high decoding complexity even when decoded using reduced-complexity decoders such as sphere or QRDM decoders. In this paper, we introduce a new code property of STC called block-orthogonal property, which can be exploited by QR-decomposition-based decoders to achieve significant decoding complexity reduction without performance loss. We show that such complexity reduction principle can benefit the existing algebraic codes such as Perfect and DjABBA codes due to their inherent (but previously undiscovered) block-orthogonal property. In addition, we construct and optimize new full-rate block-orthogonal STC (BOSTC) that further maximize the QRDM complexity reduction potential. Simulation results of bit error rate (BER) performance against decoding complexity show that the new BOSTC outperforms all previously known codes as long as the QRDM decoder operates in reduced-complexity mode, and the code exhibits a desirable complexity saturation property.

Published in:

Selected Topics in Signal Processing, IEEE Journal of  (Volume:5 ,  Issue: 8 )