By Topic

Linear programming based parallel job scheduling for power constrained systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Maja Etinski ; Computer Science Department, Barcelona Supercomputing Center, Barcelona, Spain ; Julita Corbalan ; Jesus Labarta ; Mateo Valero

Power has become the primary constraint in high performance computing. Traditionally, parallel job scheduling policies have been designed to improve certain job performance metrics when scheduling parallel workloads on a system with a given number of processors. The available number of processors is not anymore the only limitation in parallel job scheduling. The recent increase in processor power consumption has resulted in a new limitation: the available power. Given constraints naturally lead to an optimization problem. In this paper we propose MaxJobPerf, a new parallel job scheduling policy based on integer linear programming. Dynamic Voltage Frequency Scaling (DVFS) is a widely used technique that running applications at reduced CPU frequency/voltage trades increased execution time for power reduction. The optimization problem determines which jobs should run and at which frequency. The MaxJobPerf policy clearly outperforms the other power budgeting approaches at the parallel job scheduling level.

Published in:

High Performance Computing and Simulation (HPCS), 2011 International Conference on

Date of Conference:

4-8 July 2011