By Topic

ECG Pattern Analysis for Emotion Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Agrafioti, F. ; Dept. of Electr. & Comput. Eng., Univ. of Toronto, Toronto, ON, Canada ; Hatzinakos, D. ; Anderson, A.K.

Emotion modeling and recognition has drawn extensive attention from disciplines such as psychology, cognitive science, and, lately, engineering. Although a significant amount of research has been done on behavioral modalities, less explored characteristics include the physiological signals. This work brings to the table the ECG signal and presents a thorough analysis of its psychological properties. The fact that this signal has been established as a biometric characteristic calls for subject-dependent emotion recognizers that capture the instantaneous variability of the signal from its homeostatic baseline. A solution based on the empirical mode decomposition is proposed for the detection of dynamically evolving emotion patterns on ECG. Classification features are based on the instantaneous frequency (Hilbert-Huang transform) and the local oscillation within every mode. Two experimental setups are presented for the elicitation of active arousal and passive arousal/valence. The results support the expectations for subject specificity, as well as demonstrating the feasibility of determining valence out of the ECG morphology (up to 89 percent for 44 subjects). In addition, this work differentiates for the first time between active and passive arousal, and advocates that there are higher chances of ECG reactivity to emotion when the induction method is active for the subject.

Published in:

Affective Computing, IEEE Transactions on  (Volume:3 ,  Issue: 1 )