By Topic

An Adaptive Artificial Immune Network for Supervised Classification of Multi-/Hyperspectral Remote Sensing Imagery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yanfei Zhong ; State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, China ; Liangpei Zhang

The artificial immune network (AIN), a computational intelligence model based on artificial immune systems inspired by the vertebrate immune system, has been widely utilized for pattern recognition and data analysis. However, due to the inherent complexity of current AIN models, their application to multi-/hyperspectral remote sensing image classification has been severely restricted. This paper presents a novel supervised AIN-namely, the artificial antibody network (ABNet), based on immune network theory-aimed at performing multi-/hyperspectral image classification. To construct the ABNet, the artificial antibody population (AB) model was utilized. AB is the set of antibodies where each antibody has two attributes-its center vector and recognizing radius-thus each can recognize all antigens within its recognizing radius. In contrast to the traditional AIN model, ABNet can adaptively obtain these two parameters by evolving the antigens without relying on user-defined parameters in the training step. During the process of training, to enlarge the recognizing range, the immune operators (such as clone, mutation, and selection) were used to enhance the AB model to find better antibody in the feature space, which may recognize as much antigen as possible. After the training process, the trained ABNet was utilized to classify the remote sensing image, exhibiting superior learning abilities. Three experiments with different types of images were performed to evaluate the performance of the proposed algorithm in comparison to other supervised classification algorithms: minimum distance, Gaussian maximum likelihood, back-propagation neural network, and our previously developed artificial immune classifiers-resource-limited classification of remote sensing image and multiple-valued immune network classifier. The experimental results demonstrate that ABNet has remarkable recognizing accuracy and ability to provide effective classification for multi-/hyperspectral remote sensi- g imagery, superior to other methods.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:50 ,  Issue: 3 )