Cart (Loading....) | Create Account
Close category search window
 

Detection and Analysis of Transitional Activity in Manifold Space

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ali, R. ; Hamlyn Center, Imperial Coll., London, UK ; Atallah, L. ; Lo, B. ; Guang-Zhong Yang

Activity monitoring is important for assessing daily living conditions for elderly patients and those with chronic diseases. Transitions between activities can present characteristic patterns that may be indicative of quality of movement. To detect and analyze transitional activities, a manifold-based approach is proposed in this paper. The proposed method uses a recursive spectral graph-partitioning algorithm to segment transitions in activity. These segments are subsequently mapped to a reference manifold space. Categorization of transitions is performed with the corresponding features in the manifold space. The practical value of the work is demonstrated through data collected under laboratory conditions, as well as patients recovering from total knee replacement operations, demonstrating specific transitions and motion impairment compared to normal subjects.

Published in:

Information Technology in Biomedicine, IEEE Transactions on  (Volume:16 ,  Issue: 1 )

Date of Publication:

Jan. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.