Cart (Loading....) | Create Account
Close category search window
 

Real-Time Coordination of Plug-In Electric Vehicle Charging in Smart Grids to Minimize Power Losses and Improve Voltage Profile

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Deilami, S. ; Dept. of Electr. & Comput. Eng., Curtin Univ., Perth, WA, Australia ; Masoum, A.S. ; Moses, P.S. ; Masoum, M.A.S.

This paper proposes a novel load management solution for coordinating the charging of multiple plug-in electric vehicles (PEVs) in a smart grid system. Utilities are becoming concerned about the potential stresses, performance degradations and overloads that may occur in distribution systems with multiple domestic PEV charging activities. Uncontrolled and random PEV charging can cause increased power losses, overloads and voltage fluctuations, which are all detrimental to the reliability and security of newly developing smart grids. Therefore, a real-time smart load management (RT-SLM) control strategy is proposed and developed for the coordination of PEV charging based on real-time (e.g., every 5 min) minimization of total cost of generating the energy plus the associated grid energy losses. The approach reduces generation cost by incorporating time-varying market energy prices and PEV owner preferred charging time zones based on priority selection. The RT-SLM algorithm appropriately considers random plug-in of PEVs and utilizes the maximum sensitivities selection (MSS) optimization. This approach enables PEVs to begin charging as soon as possible considering priority-charging time zones while complying with network operation criteria (such as losses, generation limits, and voltage profile). Simulation results are presented to demonstrate the performance of SLM for the modified IEEE 23 kV distribution system connected to several low voltage residential networks populated with PEVs.

Published in:

Smart Grid, IEEE Transactions on  (Volume:2 ,  Issue: 3 )

Date of Publication:

Sept. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.