By Topic

Towards Design of a Stumble Detection System for Artificial Legs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Fan Zhang ; Dept. of Electr., Comput., & Biomed. Eng., Univ. of Rhode Island, Kingston, RI, USA ; D'Andrea, S.E. ; Nunnery, M.J. ; Kay, S.M.
more authors

Recent advances in design of powered artificial legs have led to increased potential to allow lower limb amputees to actively recover from stumbles. To achieve this goal, promptly and accurately identifying stumbles is essential. This study aimed to 1) select potential stumble detection data sources that react reliably and quickly to stumbles and can be measured from a prosthesis, and 2) investigate two different approaches based on selected data sources to detect stumbles and classify stumble types in patients with transfemoral (TF) amputations during ambulation. In the experiments, the normal gait of TF amputees was perturbed by a controllable treadmill or when they walked on an obstacle course. The results showed that the acceleration of prosthetic foot can accurately detect the tested stumbling events 140-240 ms before the critical timing of falling and precisely classify the stumble type. However, the detector based on foot acceleration produced high false alarm rates, which challenged its real application. Combining electromyographic (EMG) signals recorded from the residual limb with the foot acceleration significantly reduced the false alarm rate but sacrificed the detection response time. The results of this study may lead to design of a stumble detection system for instrumented, powered artificial legs; however, continued engineering efforts are required to improve the detection performance and resolve the challenges that remain for implementing the stumble detector on prosthetic legs.

Published in:

Neural Systems and Rehabilitation Engineering, IEEE Transactions on  (Volume:19 ,  Issue: 5 )