By Topic

Current Control for an Indirect Matrix Converter With Filter Resonance Mitigation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Marco Rivera ; Department of Electronics Engineering, Universidad Técnica Federico Santa María, Valparaiso, Chile ; Jose Rodriguez ; Bin Wu ; José R. Espinoza
more authors

A predictive control scheme for the indirect matrix converter including a method to mitigate the resonance effect of the input filter is presented. A discrete-time model of the converter, the input filter, and the load is used to predict the behavior of the instantaneous input reactive power and the output currents for each valid switching state. The control scheme selects the state that minimizes the value of a cost function in order to generate input currents with unity power factor and output currents with a low error with respect to a reference. The active damping method is based on a virtual harmonic resistor which damps the filter resonance. This paper shows experimental results to demonstrate that the proposed control method can generate good tracking of the output-current references, achieve unity input displacement power factor, and reduce the input-current distortion caused by the input filter resonance.

Published in:

IEEE Transactions on Industrial Electronics  (Volume:59 ,  Issue: 1 )