By Topic

RRPD strategies for a T-OBS network architecture

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Pedrola, O. ; CCABA, Univ. Politec. de Catalunya, Barcelona, Spain ; Careglio, D. ; Klinkowski, M. ; Sole-Pareta, J.

In this paper, we deal with the physical layer impairments (PLIs) in optical burst switching (OBS). In particular we present a formulation of the routing and regenerator placement and dimensioning (RRPD) problem for a feasible translucent OBS (T-OBS) network architecture. Since addressing the joint RRPD problem results in an extremely complex undertaking, we decouple the problem, and hence, we eventually provide formal models to solve routing and RPD separately in the socalled R+RPD problem. Thus, making use of mixed integer linear programming (MILP) formulations, we first address the routing problem with the aim of minimizing congestion in bottleneck network links, and second, we tackle the issue of performing a sparse placement of electrical regenerators in the network. Since the RPD formulation requires high computational effort for large problem instances, we also propose two alternative heuristic strategies that provide good near-optimal solutions within reasonable time limits. To be precise, we evaluate the trade-off between optimality and complexity provided by these methods. Finally, we conduct a series of simulation experiments on the T-OBS network that prove that the R+RPD strategies effectively deal with burst losses caused by the impact of PLIs, and therefore, ensure that the overall T-OBS network performance remains unaffected.

Published in:

High Performance Switching and Routing (HPSR), 2011 IEEE 12th International Conference on

Date of Conference:

4-6 July 2011