By Topic

On the optimum switch radix in fat tree networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Cyriel Minkenberg ; IBM Research - Zurich, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland ; Ronald P. Luijten ; German Rodriguez

Based on a realistic, yet simple cost model, we compute the switch radix that minimizes the cost of a fat tree network to support a given number of end nodes. The cost model comprises two parameters indicating the relative cost of a crosspoint vs. a link, and the crosspoint-independent base cost of a switch. These parameters can be adapted to represent a given technology used to implement links and switches. Based on these inputs, the resulting model allows a quick evaluation of the switch radix that minimizes the overall cost of the network. We demonstrate that the optimum radix depends most strongly on the relative cost of a link, and turns out to be largely independent of the network size. Using a first-order cost bounds analysis based on current CMOS and link technology, our model indicates that the optimum switch radix for large fat trees is driven almost entirely by link cost and as a result lies in the range of hundreds of ports, rather than the tens of ports being offered today by most commercial switch products today.

Published in:

2011 IEEE 12th International Conference on High Performance Switching and Routing

Date of Conference:

4-6 July 2011